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Abstract

We propose an approach to binocular stereo that avoids exhaustive photoconsistency
computations at every pixel, since they are redundant and computationally expensive, es-
pecially for high resolution images. We argue that developing scalable stereo algorithms
is critical as image resolution is expected to continue increasing rapidly. Our approach
relies on oversegmentation of the images into superpixels, followed by photoconsistency
computation for only a random subset of the pixels of each superpixel. This generates
sparse reconstructed points which are used to fit planes. Plane hypotheses are propagated
among neighboring superpixels, and they are evaluated at each superpixel by selecting a
random subset of pixels on which to aggregate photoconsistency scores for the competing
planes. We performed extensive tests to characterize the performance of this algorithm
in terms of accuracy and speed on the full-resolution stereo pairs of the 2014 Middlebury
benchmark that contains up to 6-megapixel images. Our results show that very large
computational savings can be achieved at a small loss of accuracy. A multi-threaded im-
plementation of our method 1 is faster than other methods that achieve similar accuracy
and thus it provides a useful accuracy-speed tradeoff.

1 Introduction
An inspection of the relevant benchmarks [14, 25, 27, 30] shows that substantial progress
has been made in stereo matching, and the effects of many of the inherent challenges, such
as lack of texture, repetitive patterns and occlusion, have been mitigated to a large degree. A
challenge that has yet not been fully addressed is that of estimating disparity maps of even
moderately high resolution images. While the accuracy of modern approaches on these data
is remarkable, the resolution of the images is a small fraction of that produced by even the
cheapest current cameras. The images of the first two versions of the Middlebury Stereo
Evaluation benchmark [25] do not exceed 200,000 pixels, those of the KITTI stereo bench-
mark [14] are roughly 0.5 megapixels, and the multi-view stereo benchmark of Seitz et al.
[27] contains 640×480 images. The resolution of the images in the inactive benchmark of
Strecha et al. [30] is 6 megapixels, but virtually all authors have downsampled them.
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(a) (b) (c) (d)
Figure 1: (a,b) Left image of the Australia and Jadeplant stereo pair, part of the Middlebury
test and training set [26] respectively. (c,d) The disparity maps computed by our algorithm.

Recently, the third version of the Middlebury Stereo Evaluation benchmark was released
[26]. It contains mostly 6 megapixel images and allows processing at three resolutions: full
(F), half (H) and quarter (Q). The images are more challenging and realistic than those of pre-
vious Middlebury benchmarks due to miscalibration, exposure and illumination variations,
the materials depicted and the complexity of the scenes. Results of Semi-Global Matching
(SGM) [16] on all resolutions are provided as a baseline. This leads to a surprising observa-
tion: the percentage of pixels with a disparity error greater than 2 is: 21.2, 18.7 and 25.3% for
Q, H and F resolution, respectively. Counter-intuitively, SGM achieves the lowest accuracy
at the highest resolution. In fact, most top performing results are in H resolution. To us, this
is an indication of the lack of effective high-resolution stereo algorithms. We speculate that
this is partially due to miscalibration effects that are more pronounced at higher resolutions
and that most methods are tuned for lower resolution images.

A bottleneck for the majority of conventional stereo methods is the computation of a
photoconsistency measure for all possible disparity assignments to all pixels. (The number
of computations grows cubically with the width of the image, since the disparity range must
grow with image resolution for a fixed depth range.) This is true for both local methods that
rely mainly on the photoconsistency measure to assign disparities to pixels and for global
methods that use these computations for the data terms of their objective functions. Storing
the photoconsistency (matching cost) volume is an additional bottleneck for methods that
require it. For example, the cost volume for the Vintage stereo pair [26] is over 16 GB at
single or integer precision (for 2912×1924 pixels and 740 possible disparities per pixel).

Many of the best-performing methods use deep learning and are applied on H resolution
images. The most representative among them is the MC-CNN approach [38, 39]. It requires
12 GB of GPU memory, which is the maximum that is currently available. Applying MC-
CNN at full-resolution would take a GPU with roughly 100 GB of memory or new techniques
for splitting the computation. Image resolution is likely to continue growing faster than
storage and computational requirements. In order for stereo matching to be applicable to
high resolution imagery, computation and storage requirements must be drastically reduced.

Algorithms that do not perform exhaustive photoconsistency computations have been
reported in the literature (see Section 2). PatchMatch stereo [8] is based on a random search
and propagation scheme that is much faster than the naive baseline of considering every
possible plane orientation at every possible depth for each pixel, but it is not a fast algorithm
overall. This is due to the increased dimensionality of the search space and the fact that
all pixels are visited during propagation. Algorithms that do not visit all pixels have also
been proposed. Geiger et al. [13] compute the photoconsistency of pixels on a regular grid
and connect them via Delaunay triangulation to approximate the surface. Sinha et al. [29]
match interest points and use them to estimate planes which in turn define multiple local
plane sweep problems that require photoconsistency computations only locally around each
plane. Compared to these approaches, the use of superpixels allows our algorithm to reason
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on regions that are very likely to respect object boundaries. Wang et al. [34] eliminate
uninformative photoconsistency computations by testing whether the true disparity is likely
to have already been found. After the disparity range of each pixel has been reduced to a
small subset, however, these algorithms [13, 29, 34] still evaluate disparity hypotheses at
every pixel.

We propose to significantly reduce photoconsistency computations with a sampling rou-
tine, and we analyze the impact of such sampling on the accuracy of the final disparity maps.
Our superpixel-based stereo algorithm initially fits planes to superpixels and subsequently
propagates plane hypotheses among neighboring superpixels. The algorithm requires photo-
consistency computations in two stages: for the generation of pixel-wise disparity estimates
that are used to fit planes to the superpixels and for assessing the quality of different plane
hypotheses for each superpixel. Both of these steps involve a lot of redundant computa-
tions, since nearby pixels often have similar, but not identical, disparities. We claim that
performing a fraction of these computations is sufficient to achieve accuracy close to that of
an exhaustive version of the algorithm, at a smaller computational cost. Errors due to incor-
rect plane estimation or lack of texture are corrected in the plane propagation stage. Since
propagation occurs on the superpixel adjacency graph, plane hypotheses reach much longer
ranges than PatchMatch stereo [8] and other similar algorithms. Figure 1 shows two images
of the test set and the disparity maps generated by our algorithm.

In summary, the contributions of this paper are:
• an approach to stereo matching that does not rely on exhaustive photoconsistency com-

putation for either the hypothesis generation or the hypothesis evaluation step,
• regularization and long range hypothesis propagation through the use of superpixels,

which are very likely to respect image boundaries,
• a flexible approach that can be parameterized to achieve a speed-accuracy tradeoff

in accordance to a user-specified utility function and is also highly parallelizable en-
abling a fast implementation that obtains competitive results on the Middlebury 2014
benchmark.

2 Related work
In this section, we review approaches to stereo matching that do not require exhaustive pho-
toconsistency computations. PatchMatch stereo [8] caused a paradigm shift by showing that
it is possible to obtain state of the art accuracy relying on randomized search and propaga-
tion. Algorithms inspired by PatchMatch include the work of Heise et al. [15], who integrate
the PatchMatch concept in a variational formulation that explicitly regularizes disparity and
normal gradients, instead of smoothing them. Besse et al. [4] propose to use PatchMatch to
compute the unary terms of an energy function optimized using particle belief propagation
(PBP). PatchMatch-based algorithms [4, 8, 15] compute photoconsistency for all pixels, but
not exhaustively since this is impractical due to the increased dimensionality of the search
space that includes surface normals in addition to disparity.

Wang et al. [33] observe that it is redundant to evaluate all disparity candidates for all
pixels due to the smoothness of natural images. Their approach relies on bilateral filtering for
propagating disparities from seeds to their neighborhoods and is thus limited to piecewise
constant disparity maps. This work was extended by integrating a sequential probability
ratio test to determine when the sampling of photoconsistency is sufficient and by modeling
slanted surfaces [34]. Propagation, however, is still local, between neighboring pixels.
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Other methods restrict initial processing to a subset of the pixels that are used to guide
disparity estimation for their neighbors in a deterministic way. ELAS [13] explores the
full disparity range of pixels on the vertices of a regular grid. Delaunay triangulation is
applied on these support points, and the resulting triangles cover all pixels. Sinha et al. [29]
propose the Local Plane Sweep (LPS) algorithm that clusters matched interest points to form
disparity plane hypotheses. Local plane sweep problems are then defined around each plane
and solved by a generalized version of SGM [16].

Superpixel or segmentation-based approaches to stereo matching are also relevant to
our research. The paper of Birchfield and Tomasi [5] is a milestone since it relaxed the
fronto-parallel assumption and proposed a practical algorithm for global optimization with
plane memberships as labels. This work was extended to non-planar segments by Lin and
Tomasi [20]. Segmentation-based approaches have also been very successful on the previous
[6, 7, 9, 17, 31, 35] and current [19, 40] Middlebury benchmarks, as well as the KITTI
benchmark [10, 32, 36, 37], but they visit all pixels in all iterations. Recently, Duan and
Lafarge [12] addressed 3D reconstruction from satellite imagery relying on segmentation
and priors on buildings.

A different class of algorithms that generates piecewise planar reconstruction are those
that use the Total Generalized Variation (TGV) as the regularization term [18, 23, 24]. As
opposed to minimizing total variation which favors piecewise constant solutions, minimizing
TGV of order 2, along with a data fidelity term, leads to piecewise affine solutions.

3 Method
The main steps of our method are the following. We consider the first two preprocessing.

1. Vertical alignment of the images to correct residual calibration errors,
2. Oversegmentation of the reference image into superpixels using SLIC [2],
3. Photoconsistency estimation for a random sample S of the pixels within each super-

pixel,
4. Plane-fitting for each superpixel using RANSAC,
5. Propagation of planes among neighboring superpixels for n iterations, evaluating pho-

toconsistency on a random sample V of the pixels.

3.1 Vertical Alignment
Based on the observation of Scharstein et al. [26] that conventional calibration procedures
are likely to leave some residual vertical disparities in high resolution stereo pairs, we refine
the rectification by estimating a transformation as in [29]. We extract upright SURF features
[3] in both images and detect potential correspondences. We then use RANSAC to fit a global
linear model of vertical displacement dy(x,y) = ay+b. This is estimated for each stereo pair
and leads to small refinements of the rectification. While it is visually imperceptible, we
verified experimentally that a misalignment of the epipolar lines by even one pixel makes a
noticeable difference in the accuracy of stereo matching.

3.2 Superpixel Segmentation
We segment the left image of the stereo pair, which will be used as the reference image
throughout, into superpixels using the SLIC algorithm of Achanta et al. [2]. SLIC is a fast
adaptation of k-means for image oversegmentation in which the pixel dissimilarity metric de-
pends on color and image coordinate distances. The relative weights of the two distances can
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be adjusted to obtain more or less compact superpixels. SLIC has two additional parameters
that control the average superpixel size and the size in pixels below which a connected com-
ponent is eliminated in postprocessing. We have evaluated the effects of the parameters of
SLIC on our algorithm, but have done so non-exhaustively since we consider segmentation
as preprocessing. The main objective is to ensure an oversegmentation, so that superpixels
do not straddle multiple surfaces, while keeping the number of superpixels manageable. To
avoid handling the small blank areas that may appear after vertical alignment, we segment
the original images and warp the segment labels according to the aligning transformation.

3.3 Sparse Photoconsistency Estimation and Plane-Fitting
Our research is motivated by the observation that exhaustive photoconsistency computation
is redundant since, in most cases, neighboring pixels have similar disparities and similar
local maxima in their photoconsistency curves. Since we approximate the superpixels with
planar surfaces, a small number of correctly reconstructed points is sufficient to estimate
each plane. Of course, relying on more points is advantageous as it increases robustness
against wrong matches and allows a more precise fit based on all inliers after RANSAC.
This tradeoff between sampling density and accuracy is our focus in this paper.

We select pixels for which to estimate photoconsistency by randomly choosing a fraction
s of all pixels in each superpixel. For the selected pixels S, we evaluate the photoconsistency
of all disparity candidates using normalized cross correlation (NCC). We apply a simple
Winner-Take-All (WTA) disparity selection on the sampled pixels and assign to them the
disparity with the maximum NCC value.

Given a sparse set of points in (x,y,d) space, we fit a plane using RANSAC. We enforce
the disparity gradient limit [22] and reject plane hypotheses that have a disparity gradient
larger than one with respect to either camera, and those that cause an inversion of pixel
ordering between the two images. The hypothesis with the most inliers, defined as recon-
structed points whose distance to the plane is at most one disparity level, is selected. The
final plane equation is assigned to the superpixel after applying SVD to all inliers to obtain
the plane normal. We tried re-using the matched SURF features from Section 3.1 to augment
the set of reconstructed points, but no benefits were observed, so this step was eliminated for
simplicity. Figure 3 (c) shows the disparity map for MotorcycleE after plane-fitting. Notice
that many superpixels are visually correct, but others appear to be entirely wrong.

3.4 Plane Propagation
Most pixels in the disparity maps generated after plane fitting have correct disparities. Errors
are mostly due to occlusion or lack of texture. While the former is partially mitigated if the
superpixels have a sufficiently large visible part in which pixels can be matched accurately,
it is clear that some form of regularization would be beneficial.

We implemented regularization in the form of plane propagation where each superpixel
receives plane hypotheses from its neighboring superpixels. To facilitate this step, we record
the superpixel adjacency graph and propagate planes among superpixels connected by edges
in the graph. Propagation starts from left to right, then right to left, top to bottom and finally
bottom to top. Edges in the graph are assigned to the nearest of the four directions, based on
the relative location of the superpixel centroids. We define an iteration as a full cycle over
the four propagation directions. Each superpixel collects on average six plane hypotheses at
each iteration and compares their photoconsistency with that of its current plane. Due to the
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size of the superpixels, plane hypotheses can be propagated much faster from one part of the
image to another compared to pixel-based algorithms, such as PatchMatch Stereo.

Following a similar argument as that in Section 3.3, evaluating the photoconsistency of
plane hypotheses on all pixels is redundant. Therefore, we propose to restrict evaluation only
to a sampled subset of pixels. Since only one disparity per pixel for each plane hypotheses
must be evaluated, this step is much cheaper computationally than the previous one. Due
to this difference and to avoid biasing the entire solution based on the previous sample, we
select a different subset of pixels V for these computations at a new rate v.

First, for the subset of pixels V , we aggregate the NCC scores for the initial plane es-
timate produced from RANSAC. Then, at each iteration, all adjacent plane candidates that
are propagated to a superpixel are scored by accumulating new NCC scores for the subset V .
NCC windows are smaller here than the initial photoconsistency estimation step. This was
determined experimentally. If the new plane hypothesis is more photoconsistent than the
current one, it replaces it. (Relying on the number of plane inliers to score plane hypotheses
led to inferior results.) Propagation is performed for n iterations, with n being one of the
main parameters of our algorithm along with the sampling rates s and v. For the same values
of v and s, the plane propagation step is cheaper computationally since on average only six
plane hypotheses have to be evaluated as opposed to the entire disparity range.

4 Experimental Results

We perform a comprehensive set of experiments on Version 3 of the Middlebury Stereo
Evaluation [26] using only the full resolution images. As noted in the introduction, it is pos-
sible to achieve higher accuracy on half-resolution images using sophisticated optimization
techniques. Our focus in this paper, however, is on high resolution data. Version 3 of the
benchmark consists of a training set of 15 stereo pairs with publicly available ground truth
and a test set of 15 stereo pairs, the ground truth for which has not been released. The image
resolution varies between 1.5 and 5.9 megapixels with an average of 5.2 megapixels and the
disparity range varies between 256 and 800 with an average of 387. These data are available
at three resolutions: full (F), half (H) and quarter (Q). This version of the benchmark is more
challenging because most stereo pairs have imperfect rectification, except those with a suffix
’P’ in their filename, while several others contain images taken under different exposure or
lighting, denoted by ’E’ and ’L’ respectively [26]. The ranking in the new tables is deter-
mined by weighted averages of the selected metric. (We explicitly state whether the tables
below show weighted or un-weighted averages.) The default error metric is the percentage
of “bad" pixels with disparity errors above a certain threshold.

The following parameters were held constant for the results shown in this section. The
upright SURF features were used with the default OpenCV parameters. NCC was computed
on grayscale versions of the images, in 15 × 15 windows in the initial photoconsistency
estimation phase and in 5× 5 windows during plane propagation. For SLIC, region size
(distance between adjacent segment centroids) was set to 60, the regularization parameter to
200 and the minimum region size to 800 pixels. The objective of our experiments was to
assess the speed-accuracy tradeoff as a function of three parameters:

• the sampling rate s for the initial plane fitting step,
• the sampling rate v for comparing propagated plane hypotheses, and
• the number of propagation iterations n.
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Figure 2: (a) Error rate as a function of sampling rate, keeping s and v equal. The purple,
red and blue curves correspond to 1, 3 and 5 propagation iterations respectively. (The latter
two are almost indistinguishable.) Results are averages over 10 trials. (b) Error rate as a
function of the initial sampling rate s for n=3 iterations. The blue, orange and gray curves
correspond to v being 100%, 25% and 10% respectively. Results are averages over 10 trials
for each sampling rate. (c) Error rate over execution time (in sec) for various settings of the
parameters. The red point corresponds to the settings used for the submitted results.

Sampling rate (s/v) 2.5% 5% 10% 25% 100%
NCC-RANSAC time (sec) 66.7 133.0 265.6 663.4 2661.6

Plane propagation time (sec) 1.7 3.0 5.7 13.8 54.8

Table 1: Average execution times on the training set for NCC computation and plane-fitting
using RANSAC (Section 3.3) and for one iteration of plane propagation and selection (Sec-
tion 3.4) for different values of the corresponding sampling rate, s or v. The execution time
of the relevant part of the single-threaded code scales approximately linearly with s, v and
n. An overhead of 24.8 sec, that includes the time needed for SLIC, should be added to the
above times to obtain the total execution time.

4.1 Speed-Accuracy Analysis
We begin with results on the effects of the three parameters on the accuracy of the algorithm,
while also aiming to reveal potential redundancies and opportunities for accuracy improve-
ments at low computational cost. All results in this subsection are un-weighted averages
over the training set with the error threshold set at 2.0 pixels. Execution times are for a
single-threaded C++ implementation on an Intel Core i7-4900MQ processor at 2.8GHz with
16 GB of RAM. A faster implementation will be discussed later.

Figure 2 (a) shows how the error varies for a fixed number of propagation iterations n
as the sampling rates s and v, which are kept equal to each other in these tests, vary. Not
surprisingly, more iterations are beneficial but diminishing returns are observed. Execution
time grows approximately linearly with the number of iterations for a given v. Knowledge
of the expected improvements due to each additional iteration on the training set allows the
user to make an informed decision on the value of the parameters that fit a particular task.

Next, we show error rates as both s and v vary, while the number of iterations is set to 3 in
Figure 2 (b). A conclusion that can be drawn from these results is that setting s to very small
values leads to poor accuracy regardless of v. Table 1 shows timing results of the various
steps of our algorithm using the single-threaded C++ implementation. Its purpose is to show
how much can be saved by sampling photoconsistency computations.

Given data on accuracy and execution time, a fraction of which has been presented above,
users can select parameter values that meet their needs. What is missing is either a constraint
on error rate or processing time or a utility function that combines the two. The Middlebury
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Algorithm NCC5 NCC5 NCC11 NCC15 SPS100, n=0 SPS100, n=3 SPS, n=0 SPS, n=3
bad 1.0 72.6 52.7 48.1 43.5 35.5 32.5 36.8 33.0
bad 2.0 68.6 47.1 42.0 36.5 26.0 22.6 27.2 22.9

Table 2: Un-weighted average error rates on the Middlebury training set at two values of the
threshold. SPS is our algorithm using s=5%, v=25% and n=3, while SPS100 uses s=100%,
v=100% and n=3. Run times for single-threaded implementations of NCC in 15× 15 win-
dows, SPS100 and SPS are 2635.2, 2834.3 and 194.9 sec respectively. The latter shows that
a 14-fold reduction in the number of operations only results in a minimal loss of accuracy.

Algorithm Dense Training dense Test dense
bad 1.0 bad 2.0 time/MP bad 1.0 bad 2.0 time/MP

SPS y 30.0 21.1 4.33 29.1 19.6 4.77
LPS [29] y 33.7 26.2 7.14 27.6 20.3 5.28
SGM [16] n 31.7 22.1 10.3 35.8 25.3 13.4
SGBM11 [1] n 36.5 27.4 2.79 38.0 28.4 3.69
PFS [11] y 30.3 19.9 5.66 43.0 32.2 10.2
ELAS [13] n 38.5 26.6 0.56 44.4 32.3 0.56
TSGO [21] y 55.0 31.3 11.4 55.9 39.1 8.26
ICSG [28] n 47.9 37.7 31.9 55.2 45.6 36.2

Table 3: Weighted average error rates on the full-resolution Middlebury data. The table
includes only published full-resolution results and ours. It is sorted according to bad 2.0 on
the test set, the default criterion. Our algorithm is the fastest in terms of time per megapixel
among the dense algorithms that produce disparities for all pixels.

benchmark does not provide any of these additional bits of information; the most common
goal is high accuracy. We feel, however, that setting s and v to 100% and performing sev-
eral propagation iterations is against the spirit of our algorithm. In Figure 2 (c), we plot the
error rate over execution time for several settings of the three parameters approximating the
frontier points of our algorithm’s ROC curve. Since we explicitly wanted to avoid arbitrarily
setting the cost of each additional second of run time in terms of a number of bad pixels, we
applied several other criteria to select the operating point. These included finding the point
that is nearest to the origin after normalizing time and error rate by their standard deviation,
with and without trimming extreme values, and picking the point with the highest f-score.
The majority of these tests selected the point that is marked in red in the figure, which cor-
responds to s=5%, v=25% and n=3. The choice of a large value for v is not surprising, since
plane evaluation is computationally cheap and leads to accuracy gains. These parameters
were used for our submission to the benchmark. Note that this is neither the most accurate
nor the fastest configuration of our algorithm.

4.2 Middlebury Evaluation Results
Here, we compare our results on the dense training and test datasets of the new benchmark
with those of baseline algorithms, namely Winner-Take-All NCC and our algorithm with
fully dense sampling, as well as with submitted results by seven other algorithms. All algo-
rithms implemented by us have been applied after calibration refinement (Section 3.1). We
will refer to our algorithm as the Sampled-Photoconsistency Stereo (SPS) algorithm and
denote by SPS100 the variant that performs exhaustive photoconsistency computations and
three plane propagation iterations.

A comparison of our algorithm using the selected parameters and the baselines imple-
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(a) (b) (c) (d)
Figure 3: The MotorcycleE example. (a) Left image. (b) Ground Truth disparity map. (c)
The disparity map after plane-fitting, but before plane propagation. (d) The final disparity
map after plane propagation.

(a) Left image (b) SPS100, n=0 (c) SPS100, n=3

(d) Ground truth (e) SPS, n=0 (f) SPS, n=3
Figure 4: Comparison of exhaustive photoconsistency computation (SPS100) with a sampled
version using the selected parameters (SPS). The middle column shows results before plane
propagation, while the rightmost column shows the final disparity maps. The error rates at
the 2.0 error threshold are: (b) 18.8%, (c) 13.9%, (e) 21.4% and (f) 15.1%. While the low
sampling rate in the initial stage leads to errors, plane propagation corrects many of them.

mented by us can be seen in Table 2. NCC is clearly less accurate than the single-threaded
SPS, and it is also slower. Three iterations of plane propagation have a large impact on the
error rate and enable the faster version of our algorithm to reach the accuracy of the exhaus-
tive one. See Figs. 3 and 4 for example results on two stereo pairs from the training set.
Figure 4 includes a comparison of exhaustive and sampled photoconsistency computations,
where plane propagation corrects initial errors of the latter to reach approximately the same
accuracy at a fraction of the time.

In order to demonstrate the parallelizability of SPS, we accelerated it using the OpenMP
framework and vector instructions provided by Intel’s MMX. SLIC was also accelerated
using the same techniques. Results produced by this version of the algorithm executed on a
6-core Intel Core i7-5820K processor at 3.3 GHz were submitted to the benchmark.

Table 3 shows the weighted average error rates at two different thresholds on the full-
resolution data of the dense training and test sets. Among all full-resolution submissions
by published methods, our algorithm ranks first or second in accuracy on both the test and
training set when the error threshold is 1.0 or 2.0. (It also ranks no worse than third when the
threshold is set to 0.5 or 4.0 on both sets. Please see the evaluation table on the Middlebury
website.) Moreover, SPS is the fastest among all dense algorithms that estimate a disparity
for every pixel, using total time or time per megapixel as the criterion.
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5 Conclusion
We have presented an approach that addresses the challenge of balancing accuracy and pro-
cessing time for stereo matching. We envision users of our approach operating under a time
budget and configuring the algorithm to obtain the highest expected accuracy in the allotted
time. In other cases, a utility function that takes into account speed and accuracy may be
available. Our analysis would allow users to select the operating point in parameter space to
maximize their utility. We believe that this is a more flexible and intuitive approach to stereo
than turnkey, black box systems.

We focused our efforts on high-resolution images due to the challenges they present
to many current stereo methods, both local and global. We strongly believe that process-
ing higher-resolution stereo images is inevitable and the research community is not fully
prepared for it. The use of superpixels provides a basis for regularizing the solution and pre-
serves region boundaries, while the piecewise planar approximation holds for small enough
superpixels as shown by the high accuracy of our results. Since it is easily parallelizable, a
multi-threaded, vectorized implementation of SPS is also the fastest among all dense algo-
rithms evaluated on the full-resolution data.
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